
Chapter 10: Information Systems Development
David T. Bourgeois

Learning Objectives

Upon successful completion of this chapter, you will be able to:

• explain the overall process of developing a new software application;
• explain the differences between software development methodologies;
• understand the different types of programming languages used to develop software;
• understand some of the issues surrounding the development of websites and mobile applications;

and
• identify the four primary implementation policies.

Introduction

When someone has an idea for a new function to be performed by a computer, how does that idea become
reality? If a company wants to implement a new business process and needs new hardware or software to
support it, how do they go about making it happen? In this chapter, we will discuss the different methods
of taking those ideas and bringing them to reality, a process known as information systems development.

Programming

As we learned in chapter 2, software is created via programming. Programming is the process of creating
a set of logical instructions for a digital device to follow using a programming language. The process of
programming is sometimes called “coding” because the syntax of a programming language is not in a form
that everyone can understand – it is in “code.”

The process of developing good software is usually not as simple as sitting down and writing some
code. True, sometimes a programmer can quickly write a short program to solve a need. But most of the
time, the creation of software is a resource-intensive process that involves several different groups of people
in an organization. In the following sections, we are going to review several different methodologies for
software development.

Systems-Development Life Cycle

The first development methodology we are going to review is the systems-development life cycle (SDLC).
This methodology was first developed in the 1960s to manage the large software projects associated with
corporate systems running on mainframes. It is a very structured and risk-averse methodology designed to
manage large projects that included multiple programmers and systems that would have a large impact on
the organization.

104
saylor.org

Saylor URL: http://www.saylor.org/courses/bus206
Attributed to: David T. Bourgeois, Ph.D.

SDLC waterfall (click to enlarge)

Various definitions of the SDLC methodology exist, but
most contain the following phases.

1. Preliminary Analysis. In this phase, a review is
done of the request. Is creating a solution
possible? What alternatives exist? What is
currently being done about it? Is this project a
good fit for our organization? A key part of this
step is a feasibility analysis, which includes an
analysis of the technical feasibility (is it possible
to create this?), the economic feasibility (can we
afford to do this?), and the legal feasibility (are
we allowed to do this?). This step is important in determining if the project should even get
started.
2. System Analysis. In this phase, one or more system analysts work with different stakeholder
groups to determine the specific requirements for the new system. No programming is done in this
step. Instead, procedures are documented, key players are interviewed, and data requirements are
developed in order to get an overall picture of exactly what the system is supposed to do. The
result of this phase is a system-requirements document.
3. System Design. In this phase, a designer takes the system-requirements document created in the
previous phase and develops the specific technical details required for the system. It is in this
phase that the business requirements are translated into specific technical requirements. The
design for the user interface, database, data inputs and outputs, and reporting are developed here.
The result of this phase is a system-design document. This document will have everything a
programmer will need to actually create the system.
4. Programming. The code finally gets written in the programming phase. Using the system-
design document as a guide, a programmer (or team of programmers) develop the program. The
result of this phase is an initial working program that meets the requirements laid out in the
system-analysis phase and the design developed in the system-design phase.
5. Testing. In the testing phase, the software program developed in the previous phase is put
through a series of structured tests. The first is a unit test, which tests individual parts of the code
for errors or bugs. Next is a system test, where the different components of the system are tested
to ensure that they work together properly. Finally, the user-acceptance test allows those that will
be using the software to test the system to ensure that it meets their standards. Any bugs, errors, or
problems found during testing are addressed and then tested again.

Chapter 10: Information Systems Development 105

saylor.org

Saylor URL: http://www.saylor.org/courses/bus206
Attributed to: David T. Bourgeois, Ph.D.

http://bus206.pressbooks.com/files/2013/04/SDLC-Waterfall.png
http://bus206.pressbooks.com/files/2013/04/SDLC-Waterfall.png

The RAD methodology (Public Domain)

6. Implementation. Once the new system is developed and tested, it has to be implemented in the
organization. This phase includes training the users, providing documentation, and conversion
from any previous system to the new system. Implementation can take many forms, depending on
the type of system, the number and type of users, and how urgent it is that the system become
operational. These different forms of implementation are covered later in the chapter.
7. Maintenance. This final phase takes place once the implementation phase is complete. In this
phase, the system has a structured support process in place: reported bugs are fixed and requests
for new features are evaluated and implemented; system updates and backups are performed on a
regular basis.

The SDLC methodology is sometimes referred to as the waterfall methodology to represent how each step
is a separate part of the process; only when one step is completed can another step begin. After each step,
an organization must decide whether to move to the next step or not. This methodology has been criticized
for being quite rigid. For example, changes to the requirements are not allowed once the process has begun.
No software is available until after the programming phase.

Again, SDLC was developed for large, structured projects. Projects using SDLC can sometimes
take months or years to complete. Because of its inflexibility and the availability of new programming
techniques and tools, many other software-development methodologies have been developed. Many of
these retain some of the underlying concepts of SDLC but are not as rigid.

Rapid Application Development

Rapid application development (RAD) is a software-
development (or systems-development) methodology that
focuses on quickly building a working model of the
software, getting feedback from users, and then using that
feedback to update the working model. After several
iterations of development, a final version is developed and
implemented.

The RAD methodology consists of four phases:
1. Requirements Planning. This phase is similar to the
preliminary-analysis, system-analysis, and design phases
of the SDLC. In this phase, the overall requirements for
the system are defined, a team is identified, and feasibility

is determined.
2. User Design. In this phase, representatives of the users work with the system analysts,
designers, and programmers to interactively create the design of the system. One technique for
working with all of these various stakeholders is the so-called JAD session. JAD is an acronym
for joint application development. A JAD session gets all of the stakeholders together to have a

106 Information Systems for Business and Beyond

saylor.org

Saylor URL: http://www.saylor.org/courses/bus206
Attributed to: David T. Bourgeois, Ph.D.

http://bus206.pressbooks.com/files/2013/04/RADModel.jpg
http://bus206.pressbooks.com/files/2013/04/RADModel.jpg

structured discussion about the design of the system. Application developers also sit in on this
meeting and observe, trying to understand the essence of the requirements.
3. Construction. In the construction phase, the application developers, working with the users,
build the next version of the system.This is an interactive process, and changes can be made as
developers are working on the program. This step is executed in parallel with the User Design
step in an iterative fashion, until an acceptable version of the product is developed.
4. Cutover. In this step, which is similar to the implementation step of the SDLC, the system goes
live. All steps required to move from the previous state to the use of the new system are
completed here.

As you can see, the RAD methodology is much more compressed than SDLC. Many of the SDLC steps
are combined and the focus is on user participation and iteration. This methodology is much better suited
for smaller projects than SDLC and has the added advantage of giving users the ability to provide feedback
throughout the process. SDLC requires more documentation and attention to detail and is well suited
to large, resource-intensive projects. RAD makes more sense for smaller projects that are less resource-
intensive and need to be developed quickly.

Agile Methodologies

Agile methodologies are a group of methodologies that utilize incremental changes with a focus on quality
and attention to detail. Each increment is released in a specified period of time (called a time box), creating
a regular release schedule with very specific objectives. While considered a separate methodology from
RAD, they share some of the same principles: iterative development, user interaction, ability to change.
The agile methodologies are based on the “Agile Manifesto,” first released in 2001.

The characteristics of agile methods include:

• small cross-functional teams that include development-team members and users;
• daily status meetings to discuss the current state of the project;
• short time-frame increments (from days to one or two weeks) for each change to be completed;

and
• at the end of each iteration, a working project is completed to demonstrate to the stakeholders.

The goal of the agile methodologies is to provide the flexibility of an iterative approach while ensuring a
quality product.

Chapter 10: Information Systems Development 107

saylor.org

Saylor URL: http://www.saylor.org/courses/bus206
Attributed to: David T. Bourgeois, Ph.D.

http://agilemanifesto.org/

The lean methodology (click to enlarge)

The quality triangle

Lean Methodology

One last methodology we will discuss is a relatively new
concept taken from the business bestseller The Lean
Startup, by Eric Reis. In this methodology, the focus is on
taking an initial idea and developing a minimum viable
product (MVP). The MVP is a working software
application with just enough functionality to demonstrate
the idea behind the project. Once the MVP is developed, it
is given to potential users for review. Feedback on the
MVP is generated in two forms: (1) direct observation and
discussion with the users, and (2) usage statistics gathered
from the software itself. Using these two forms of
feedback, the team determines whether they should
continue in the same direction or rethink the core idea
behind the project, change the functions, and create a new
MVP. This change in strategy is called a pivot. Several
iterations of the MVP are developed, with new functions
added each time based on the feedback, until a final
product is completed.

The biggest difference between the lean methodology
and the other methodologies is that the full set of requirements for the system are not known when the
project is launched. As each iteration of the project is released, the statistics and feedback gathered are used
to determine the requirements. The lean methodology works best in an entrepreneurial environment where a
company is interested in determining if their idea for a software application is worth developing.

Sidebar: The Quality Triangle

When developing software, or any sort of product or
service, there exists a tension between the developers and
the different stakeholder groups, such as management,
users, and investors. This tension relates to how quickly
the software can be developed (time), how much money
will be spent (cost), and how well it will be built (quality).
The quality triangle is a simple concept. It states that for
any product or service being developed, you can only
address two of the following: time, cost, and quality.

So what does it mean that you can only address two of
the three? It means that you cannot complete a low-cost,
high-quality project in a small amount of time. However, if
you are willing or able to spend a lot of money, then a
project can be completed quickly with high-quality results
(through hiring more good programmers). If a project’s
completion date is not a priority, then it can be completed at a lower cost with higher-quality results. Of

108 Information Systems for Business and Beyond

saylor.org

Saylor URL: http://www.saylor.org/courses/bus206
Attributed to: David T. Bourgeois, Ph.D.

http://bus206.pressbooks.com/files/2013/04/Lean-Methology.png
http://bus206.pressbooks.com/files/2013/04/Lean-Methology.png
http://theleanstartup.com/
http://theleanstartup.com/
http://bus206.pressbooks.com/files/2013/04/Quality-Triangle.png
http://bus206.pressbooks.com/files/2013/04/Quality-Triangle.png

course, these are just generalizations, and different projects may not fit this model perfectly. But overall,
this model helps us understand the tradeoffs that we must make when we are developing new products and
services.

Programming Languages

As I noted earlier, software developers create software using one of several programming languages. A
programming language is an artificial language that provides a way for a programmer to create structured
code to communicate logic in a format that can be executed by the computer hardware. Over the past few
decades, many different types of programming languages have evolved to meet many different needs. One
way to characterize programming languages is by their “generation.”

Generations of Programming Languages

Early languages were specific to the type of hardware that had to be programmed; each type of computer
hardware had a different low-level programming language (in fact, even today there are differences at
the lower level, though they are now obscured by higher-level programming languages). In these early
languages, very specific instructions had to be entered line by line – a tedious process.

First-generation languages are called machine code. In machine code, programming is done by directly
setting actual ones and zeroes (the bits) in the program using binary code. Here is an example program that
adds 1234 and 4321 using machine language:

10111001 00000000
11010010 10100001
00000100 00000000
10001001 00000000
00001110 10001011
00000000 00011110
00000000 00011110
00000000 00000010
10111001 00000000
11100001 00000011
00010000 11000011
10001001 10100011
00001110 00000100
00000010 00000000

Assembly language is the second-generation language. Assembly language gives english-like phrases to
the machine-code instructions, making it easier to program. An assembly-language program must be run
through an assembler, which converts it into machine code. Here is an example program that adds 1234 and
4321 using assembly language:

Chapter 10: Information Systems Development 109

saylor.org

Saylor URL: http://www.saylor.org/courses/bus206
Attributed to: David T. Bourgeois, Ph.D.

MOV CX,1234
MOV DS:[0],CX
MOV CX,4321
MOV AX,DS:[0]
MOV BX,DS:[2]
ADD AX,BX
MOV DS:[4],AX

Third-generation languages are not specific to the type of hardware on which they run and are much more
like spoken languages. Most third-generation languages must be compiled, a process that converts them
into machine code. Well-known third-generation languages include BASIC, C, Pascal, and Java. Here is an
example using BASIC:

A=1234
B=4321
C=A+B
END

Fourth-generation languages are a class of programming tools that enable fast application development
using intuitive interfaces and environments. Many times, a fourth-generation language has a very specific
purpose, such as database interaction or report-writing. These tools can be used by those with very little
formal training in programming and allow for the quick development of applications and/or functionality.
Examples of fourth-generation languages include: Clipper, FOCUS, FoxPro, SQL, and SPSS.

Why would anyone want to program in a lower-level language when they require so much more work?
The answer is similar to why some prefer to drive stick-shift automobiles instead of automatic transmission:
control and efficiency. Lower-level languages, such as assembly language, are much more efficient and
execute much more quickly. You have finer control over the hardware as well. Sometimes, a combination
of higher- and lower-level languages are mixed together to get the best of both worlds: the programmer will
create the overall structure and interface using a higher-level language but will use lower-level languages
for the parts of the program that are used many times or require more precision.

110 Information Systems for Business and Beyond

saylor.org

Saylor URL: http://www.saylor.org/courses/bus206
Attributed to: David T. Bourgeois, Ph.D.

The programming language spectrum (click to enlarge)

Compiled vs. Interpreted

Besides classifying a program language based on its generation, it can also be classified by whether it is
compiled or interpreted. As we have learned, a computer language is written in a human-readable form. In
a compiled language, the program code is translated into a machine-readable form called an executable that
can be run on the hardware. Some well-known compiled languages include C, C++, and COBOL.

An interpreted language is one that requires a runtime program to be installed in order to execute.
This runtime program then interprets the program code line by line and runs it. Interpreted languages
are generally easier to work with but also are slower and require more system resources. Examples of
popular interpreted languages include BASIC, PHP, PERL, and Python. The web languages of HTML and
Javascript would also be considered interpreted because they require a browser in order to run.

The Java programming language is an interesting exception to this classification, as it is actually
a hybrid of the two. A program written in Java is partially compiled to create a program that can be
understood by the Java Virtual Machine (JVM). Each type of operating system has its own JVM which
must be installed, which is what allows Java programs to run on many different types of operating systems.

Procedural vs. Object-Oriented

A procedural programming language is designed to allow a programmer to define a specific starting point
for the program and then execute sequentially. All early programming languages worked this way. As user
interfaces became more interactive and graphical, it made sense for programming languages to evolve to
allow the user to define the flow of the program. The object-oriented programming language is set up so that
the programmer defines “objects” that can take certain actions based on input from the user. In other words,
a procedural program focuses on the sequence of activities to be performed; an object-oriented program
focuses on the different items being manipulated.

For example, in a human-resources system, an “EMPLOYEE” object would be needed. If the program
needed to retrieve or set data regarding an employee, it would first create an employee object in the
program and then set or retrieve the values needed. Every object has properties, which are descriptive

Chapter 10: Information Systems Development 111

saylor.org

Saylor URL: http://www.saylor.org/courses/bus206
Attributed to: David T. Bourgeois, Ph.D.

http://bus206.pressbooks.com/files/2013/04/Programming-Languages-Spectrum.png
http://bus206.pressbooks.com/files/2013/04/Programming-Languages-Spectrum.png

fields associated with the object. In the example below, an employee object has the properties “Name”,
“Employee number”, “Birthdate” and “Date of hire”. An object also has “methods”, which can take actions
related to the object. In the example, there are two methods. The first is “ComputePay()”, which will return
the current amount owed the employee. The second is “ListEmployees()”, which will retrieve a list of
employees who report to this employee.

Object: EMPLOYEE

Name
Employee number
Birthdate
Date of hire

ComputePay()
ListEmployees()

Figure: An example of an object

Sidebar: What is COBOL?

If you have been around business programming very long, you may have heard about the COBOL
programming language. COBOL is a procedural, compiled language that at one time was the primary
programming language for business applications. Invented in 1959 for use on large mainframe computers,
COBOL is an abbreviation of common business-oriented language. With the advent of more efficient
programming languages, COBOL is now rarely seen outside of old, legacy applications.

Programming Tools

To write a program, a programmer needs little more than a text editor and a good idea. However, to be
productive, he or she must be able to check the syntax of the code, and, in some cases, compile the code. To
be more efficient at programming, additional tools, such as an integrated development environment (IDE)
or computer-aided software-engineering (CASE) tools, can be used.

Integrated Development Environment

For most programming languages, an IDE can be used. An IDE provides a variety of tools for the
programmer, and usually includes:

• an editor for writing the program that will color-code or highlight keywords from the
programming language;

• a help system that gives detailed documentation regarding the programming language;
• a compiler/interpreter, which will allow the programmer to run the program;
• a debugging tool, which will provide the programmer details about the execution of the program

in order to resolve problems in the code; and

112 Information Systems for Business and Beyond

saylor.org

Saylor URL: http://www.saylor.org/courses/bus206
Attributed to: David T. Bourgeois, Ph.D.

• a check-in/check-out mechanism, which allows for a team of programmers to work together on a
project and not write over each other’s code changes.

Probably the most popular IDE software package right now is Microsoft’s Visual Studio. Visual Studio is
the IDE for all of Microsoft’s programming languages, including Visual Basic, Visual C++, and Visual C#.

CASE Tools

While an IDE provides several tools to assist the programmer in writing the program, the code still must
be written. Computer-aided software-engineering (CASE) tools allow a designer to develop software with
little or no programming. Instead, the CASE tool writes the code for the designer. CASE tools come in
many varieties, but their goal is to generate quality code based on input created by the designer.

Sidebar: Building a Website

In the early days of the World Wide Web, the creation of a website required knowing how to use hypertext
markup language (HTML). Today, most websites are built with a variety of tools, but the final product
that is transmitted to a browser is still HTML. HTML, at its simplest, is a text language that allows you
to define the different components of a web page. These definitions are handled through the use of HTML
tags, which consist of text between brackets. For example, an HTML tag can tell the browser to show a
word in italics, to link to another web page, or to insert an image. In the example below, some text is being
defined as a heading while other text is being emphasized.

Simple HTML

Simple HTML output

While HTML is used to define the components of a web page, cascading style sheets (CSS) are used to
define the styles of the components on a page. The use of CSS allows the style of a website to be set and
stay consistent throughout. For example, if the designer wanted all first-level headings (h1) to be blue and
centered, he or she could set the “h1″ style to match. The following example shows how this might look.

Chapter 10: Information Systems Development 113

saylor.org

Saylor URL: http://www.saylor.org/courses/bus206
Attributed to: David T. Bourgeois, Ph.D.

http://www.microsoft.com/visualstudio
http://bus206.pressbooks.com/files/2013/04/HTML-code-1.png
http://bus206.pressbooks.com/files/2013/04/HTML-code-1.png
http://bus206.pressbooks.com/files/2013/04/HTML-output-1.png
http://bus206.pressbooks.com/files/2013/04/HTML-output-1.png

HTML with CSS

HTML with CSS output

The combination of HTML and CSS can be used to create a wide variety of formats and designs and has
been widely adopted by the web-design community. The standards for HTML are set by a governing body
called the World Wide Web Consortium. The current version of HTML is HTML 5, which includes new
standards for video, audio, and drawing.

When developers create a website, they do not write it out manually in a text editor. Instead, they use
web design tools that generate the HTML and CSS for them. Tools such as Adobe Dreamweaver allow the
designer to create a web page that includes images and interactive elements without writing a single line of
code. However, professional web designers still need to learn HTML and CSS in order to have full control
over the web pages they are developing.

Build vs. Buy

When an organization decides that a new software program needs to be developed, they must determine if
it makes more sense to build it themselves or to purchase it from an outside company. This is the “build vs.
buy” decision.

There are many advantages to purchasing software from an outside company. First, it is generally less
expensive to purchase a software package than to build it. Second, when a software package is purchased, it
is available much more quickly than if the package is built in-house. Software applications can take months
or years to build; a purchased package can be up and running within a month. A purchased package has
already been tested and many of the bugs have already been worked out. It is the role of a systems integrator
to make various purchased systems and the existing systems at the organization work together.

There are also disadvantages to purchasing software. First, the same software you are using can be
used by your competitors. If a company is trying to differentiate itself based on a business process that is in

114 Information Systems for Business and Beyond

saylor.org

Saylor URL: http://www.saylor.org/courses/bus206
Attributed to: David T. Bourgeois, Ph.D.

http://bus206.pressbooks.com/files/2013/04/HTML-CSS-code.png
http://bus206.pressbooks.com/files/2013/04/HTML-CSS-code.png
http://bus206.pressbooks.com/files/2013/04/HTML-CSS-output.png
http://bus206.pressbooks.com/files/2013/04/HTML-CSS-output.png
http://www.w3.org/
http://www.adobe.com/products/dreamweaver.html

that purchased software, it will have a hard time doing so if its competitors use the same software. Another
disadvantage to purchasing software is the process of customization. If you purchase a software package
from a vendor and then customize it, you will have to manage those customizations every time the vendor
provides an upgrade. This can become an administrative headache, to say the least!

Even if an organization determines to buy software, it still makes sense to go through many of the
same analyses that they would do if they were going to build it themselves. This is an important decision
that could have a long-term strategic impact on the organization.

Web Services

As we saw in chapter 3, the move to cloud computing has allowed software to be looked at as a service. One
option companies have these days is to license functions provided by other companies instead of writing the
code themselves. These are called web services, and they can greatly simplify the addition of functionality
to a website.

For example, suppose a company wishes to provide a map showing the location of someone who
has called their support line. By utilizing Google Maps API web services, they can build a Google Map
right into their application. Or a shoe company could make it easier for its retailers to sell shoes online by
providing a shoe-size web service that the retailers could embed right into their website.

Web services can blur the lines between “build vs. buy.” Companies can choose to build a software
application themselves but then purchase functionality from vendors to supplement their system.

End-User Computing

In many organizations, application development is not limited to the programmers and analysts in the
information-technology department. Especially in larger organizations, other departments develop their
own department-specific applications. The people who build these are not necessarily trained in
programming or application development, but they tend to be adept with computers. A person, for example,
who is skilled in a particular software package, such as a spreadsheet or database package, may be called
upon to build smaller applications for use by his or her own department. This phenomenon is referred to as
end-user development, or end-user computing.

End-user computing can have many advantages for an organization. First, it brings the development
of applications closer to those who will use them. Because IT departments are sometimes quite backlogged, it also provides a means
to have software created more quickly. Many organizations encourage end-user computing to reduce the strain on the IT department.

End-user computing does have its disadvantages as well. If departments within an organization are
developing their own applications, the organization may end up with several applications that perform
similar functions, which is inefficient, since it is a duplication of effort. Sometimes, these different versions
of the same application end up providing different results, bringing confusion when departments interact.
These applications are often developed by someone with little or no formal training in programming. In
these cases, the software developed can have problems that then have to be resolved by the IT department.

End-user computing can be beneficial to an organization, but it should be managed. The IT department
should set guidelines and provide tools for the departments who want to create their own solutions.
Communication between departments will go a long way towards successful use of end-user computing.

Chapter 10: Information Systems Development 115

saylor.org

Saylor URL: http://www.saylor.org/courses/bus206
Attributed to: David T. Bourgeois, Ph.D.

https://developers.google.com/maps/documentation/webservices/

Sidebar: Building a Mobile App

In many ways, building an application for a mobile device is exactly the same as building an application for
a traditional computer. Understanding the requirements for the application, designing the interface, working
with users – all of these steps still need to be carried out.

So what’s different about building an application for a mobile device? In some ways, mobile
applications are more limited. An application running on a mobile device must be designed to be functional
on a smaller screen. Mobile applications should be designed to use fingers as the primary pointing device.
Mobile devices generally have less available memory, storage space, and processing power.

Mobile applications also have many advantages over applications built for traditional computers.
Mobile applications have access to the functionality of the mobile device, which usually includes features
such as geolocation data, messaging, the camera, and even a gyroscope.

One of the most important questions regarding development for mobile devices is this: Do we want to
develop an app at all? A mobile app is an expensive proposition, and it will only run on one type of mobile
device at a time. For example, if you create an iPhone app, users with Android phones are out of luck. Each
app takes several thousand dollars to create, so this may not be the best use of your funds.

Many organizations are moving away from developing a specific app for a mobile device and are
instead making their websites more functional on mobile devices. Using a web-design framework called
responsive design, a website can be made highly functional no matter what type of device is browsing it.
With a responsive website, images resize themselves based on the size of the device’s screen, and text flows
and sizes itself properly for optimal viewing. You can find out more about responsive design here.

Implementation Methodologies

Once a new system is developed (or purchased), the organization must determine the best method for
implementing it. Convincing a group of people to learn and use a new system can be a very difficult
process. Using new software, and the business processes it gives rise to, can have far-reaching effects
within the organization.

There are several different methodologies an organization can adopt to implement a new system. Four
of the most popular are listed below.

• Direct cutover. In the direct-cutover implementation methodology, the organization selects a
particular date that the old system is not going to be used anymore. On that date, the users begin
using the new system and the old system is unavailable. The advantages to using this
methodology are that it is very fast and the least expensive. However, this method is the riskiest
as well. If the new system has an operational problem or if the users are not properly prepared, it
could prove disastrous for the organization.

• Pilot implementation. In this methodology, a subset of the organization (called a pilot group)
starts using the new system before the rest of the organization. This has a smaller impact on the
company and allows the support team to focus on a smaller group of individuals.

• Parallel operation. With parallel operation, the old and new systems are used simultaneously for a
limited period of time. This method is the least risky because the old system is still being used

116 Information Systems for Business and Beyond

saylor.org

Saylor URL: http://www.saylor.org/courses/bus206
Attributed to: David T. Bourgeois, Ph.D.

http://mashable.com/2012/12/11/responsive-web-design/

while the new system is essentially being tested. However, this is by far the most expensive
methodology since work is duplicated and support is needed for both systems in full.

• Phased implementation. In phased implementation, different functions of the new application are
used as functions from the old system are turned off. This approach allows an organization to
slowly move from one system to another.

Which of these implementation methodologies to use depends on the complexity and importance of the old
and new systems.

Change Management

As new systems are brought online and old systems are phased out, it becomes important to manage the
way change is implemented in the organization. Change should never be introduced in a vacuum. The
organization should be sure to communicate proposed changes before they happen and plan to minimize
the impact of the change that will occur after implementation. Change management is a critical component
of IT oversight.

Maintenance

Once a new system has been introduced, it enters the maintenance phase. In this phase, the system is in
production and is being used by the organization. While the system is no longer actively being developed,
changes need to be made when bugs are found or new features are requested. During the maintenance
phase, IT management must ensure that the system continues to stay aligned with business priorities and
continues to run well.

Summary

Software development is about so much more than programming. Developing new software applications
requires several steps, from the formal SDLC process to more informal processes such as agile
programming or lean methodologies. Programming languages have evolved from very low-level machine-
specific languages to higher-level languages that allow a programmer to write software for a wide variety
of machines. Most programmers work with software development tools that provide them with integrated
components to make the software development process more efficient. For some organizations, building
their own software applications does not make the most sense; instead, they choose to purchase software
built by a third party to save development costs and speed implementation. In end-user computing, software
development happens outside the information technology department. When implementing new software
applications, there are several different types of implementation methodologies that must be considered.

Study Questions

1. What are the steps in the SDLC methodology?
2. What is RAD software development?

Chapter 10: Information Systems Development 117

saylor.org

Saylor URL: http://www.saylor.org/courses/bus206
Attributed to: David T. Bourgeois, Ph.D.

3. What makes the lean methodology unique?
4. What are three differences between second-generation and third-generation languages?
5. Why would an organization consider building its own software application if it is cheaper to
buy one?
6. What is responsive design?
7. What is the relationship between HTML and CSS in website design?
8. What is the difference between the pilot implementation methodology and the parallel
implementation methodology?
9. What is change management?
10. What are the four different implementation methodologies?

Exercises

1. Which software-development methodology would be best if an organization needed to develop
a software tool for a small group of users in the marketing department? Why? Which
implementation methodology should they use? Why?
2. Doing your own research, find three programming languages and categorize them in these
areas: generation, compiled vs. interpreted, procedural vs. object-oriented.
3. Some argue that HTML is not a programming language. Doing your own research, find three
arguments for why it is not a programming language and three arguments for why it is.
4. Read more about responsive design using the link given in the text. Provide the links to three
websites that use responsive design and explain how they demonstrate responsive-design
behavior.

118 Information Systems for Business and Beyond

saylor.org

Saylor URL: http://www.saylor.org/courses/bus206
Attributed to: David T. Bourgeois, Ph.D.

	Information Systems for Business and Beyond
	Contents
	Introduction
	Part 1: What Is an Information System?
	Chapter 1: What Is an Information System?
	Chapter 2: Hardware
	Chapter 3: Software
	Chapter 4: Data and Databases
	Chapter 5: Networking and Communication
	Chapter 6: Information Systems Security
	Part 2: Information Systems for Strategic Advantage
	Chapter 7: Does IT Matter?
	Chapter 8: Business Processes
	Chapter 9: The People in Information Systems
	Chapter 10: Information Systems Development
	Part 3: Information Systems Beyond the Organization
	Chapter 11: Globalization and the Digital Divide
	Chapter 12: The Ethical and Legal Implications of Information Systems
	Chapter 13: Future Trends in Information Systems
	Answers to Study Questions
	Bibliography
	Blank Page
	Blank Page

